106 research outputs found

    Finiteness and children with specific language impairment: an exploratory study

    Get PDF
    Children with specific language impairment (SLI) are well known for their difficulties in mastering the inflectional paradigms; in the case of learning German they also have problems with the appropriate verb position, in particular with the verb in second position. This paper explores the possibilities of applying a broader concept of finiteness to data from children with SLI in order to put their deficits, or rather their skills, into a wider perspective. The concept, as developed by Klein (1998, 2000), suggests that finiteness is tied to the assertion that a certain state of affairs is valid with regard to some topic time; that is, finiteness relates the propositional content to the topic component. Its realization involves the interaction of various grammatical devices and, possibly, lexical means like temporal adverbs. Furthermore, in the acquisition of finiteness it has been found that scope particles play a major role in both first- and second-language learning. The purpose of this paper is to analyze to what extent three German-learning children with SLI have mastered these grammatical and lexical means and to pinpoint the phase in the development of finiteness they have reached. The data to be examined are mostly narrative and taken from conversations and experiments. It will be shown that each child chooses a different developmental path to come to grips with the interaction of these devices

    Clouds and Chemistry in the Atmosphere of Extrasolar Planet HR8799b

    Full text link
    Using the integral field spectrograph OSIRIS, on the Keck II telescope, broad near-infrared H and K-band spectra of the young exoplanet HR8799b have been obtained. In addition, six new narrow-band photometric measurements have been taken across the H and K bands. These data are combined with previously published photometry for an analysis of the planet's atmospheric properties. Thick photospheric dust cloud opacity is invoked to explain the planet's red near-IR colors and relatively smooth near-IR spectrum. Strong water absorption is detected, indicating a Hydrogen-rich atmosphere. Only weak CH4 absorption is detected at K band, indicating efficient vertical mixing and a disequilibrium CO/CH4 ratio at photospheric depths. The H-band spectrum has a distinct triangular shape consistent with low surface gravity. New giant planet atmosphere models are compared to these data with best fitting bulk parameters, Teff = 1100K +- 100 and log(g) = 3.5 +-0.5 (for solar composition). Given the observed luminosity, log(Lobs/Lsun) ~ -5.1, these values correspond to a radius of 0.75 Rjup (+0.17, -0.12) and mass ~ 0.72 Mjup (+2.6,-0.6) -- strikingly inconsistent with interior/evolution models. Enhanced metallicity (up to ~ 10 times that of the Sun) along with thick clouds and non-equilibrium chemistry are likely required to reproduce the complete ensemble of spectroscopic and photometric data and the low effective temperatures (< 1000K) required by the evolution models.Comment: 17 pages, accepted for publication in The Astrophysical Journa

    Masses, Radii, and Cloud Properties of the HR 8799 Planets

    Full text link
    The near-infrared colors of the planets directly imaged around the A star HR 8799 are much redder than most field brown dwarfs of the same effective temperature. Previous theoretical studies of these objects have concluded that the atmospheres of planets b, c, and d are unusually cloudy or have unusual cloud properties. Some studies have also found that the inferred radii of some or all of the planets disagree with expectations of standard giant planet evolution models. Here we compare the available data to the predictions of our own set of atmospheric and evolution models that have been extensively tested against observations of field L and T dwarfs, including the reddest L dwarfs. Unlike some previous studies we require mutually consistent choices for effective temperature, gravity, cloud properties, and planetary radius. This procedure thus yields plausible values for the masses, effective temperatures, and cloud properties of all three planets. We find that the cloud properties of the HR 8799 planets are not unusual but rather follow previously recognized trends, including a gravity dependence on the temperature of the L to T spectral transition--some reasons for which we discuss. We find the inferred mass of planet b is highly sensitive to whether or not we include the H and K band spectrum in our analysis. Solutions for planets c and d are consistent with the generally accepted constraints on the age of the primary star and orbital dynamics. We also confirm that, like in L and T dwarfs and solar system giant planets, non-equilibrium chemistry driven by atmospheric mixing is also important for these objects. Given the preponderance of data suggesting that the L to T spectral type transition is gravity dependent, we present an exploratory evolution calculation that accounts for this effect. Finally we recompute the the bolometric luminosity of all three planets.Comment: 52 pages, 12 figures, Astrophysical Journal, in press. v2 features minor editorial updates and correction

    A new concept for the combination of optical interferometers and high-resolution spectrographs

    Full text link
    The combination of high spatial and spectral resolution in optical astronomy enables new observational approaches to many open problems in stellar and circumstellar astrophysics. However, constructing a high-resolution spectrograph for an interferometer is a costly and time-intensive undertaking. Our aim is to show that, by coupling existing high-resolution spectrographs to existing interferometers, one could observe in the domain of high spectral and spatial resolution, and avoid the construction of a new complex and expensive instrument. We investigate in this article the different challenges which arise from combining an interferometer with a high-resolution spectrograph. The requirements for the different sub-systems are determined, with special attention given to the problems of fringe tracking and dispersion. A concept study for the combination of the VLTI (Very Large Telescope Interferometer) with UVES (UV-Visual Echelle Spectrograph) is carried out, and several other specific instrument pairings are discussed. We show that the proposed combination of an interferometer with a high-resolution spectrograph is indeed feasible with current technology, for a fraction of the cost of building a whole new spectrograph. The impact on the existing instruments and their ongoing programs would be minimal.Comment: 27 pages, 9 figures, Experimental Astronomy; v2: accepted versio

    Improving risk management for violence in mental health services: a multimethods approach

    Get PDF
    contractual_start_date: 07-2008 editorial_review_begun: 07-2014 accepted_for_publication: 06-2015contractual_start_date: 07-2008 editorial_review_begun: 07-2014 accepted_for_publication: 06-2015contractual_start_date: 07-2008 editorial_review_begun: 07-2014 accepted_for_publication: 06-2015contractual_start_date: 07-2008 editorial_review_begun: 07-2014 accepted_for_publication: 06-201

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    First light of the VLT planet finder SPHERE IV : Physical and chemical properties of the planets around HR8799

    Get PDF
    This is a pre-copyedited, author produced PDF of an article accepted for publication in Astronomy & Astrophysics following peer review. Subject to 12 month's embargo period. Embargo end date: 16 February 2017. The version of record [Bonnefoy, M., 'First light of the VLT planet finder SPHERE, IV. Physical and chemical properties of the planets around HR8799', A&A, 587, A58 (2016), first published online 16 February 2016] is available online at doi http://dx.doi.org/10.1051/0004-6361/201526906Context. The system of four planets discovered around the intermediate-mass star HR8799 offers a unique opportunity to test planet formation theories at large orbital radii and to probe the physics and chemistry at play in the atmospheres of self-luminous young (∼30 Myr) planets. We recently obtained new photometry of the four planets and low-resolution (R∼30) spectra of HR8799 d and e with the SPHERE instrument (paper III). Aims. In this paper (paper IV), we aim to use these spectra and available photometry to determine how they compare to known objects, what the planet physical properties are, and how their atmospheres work. Methods. We compare the available spectra, photometry, and spectral-energy distribution (SED) of the planets to field dwarfs and young companions. In addition, we use the extinction from corundum, silicate (enstatite and forsterite), or iron grains likely to form in the atmosphere of the planets to try to better understand empirically the peculiarity of their spectrophotometric properties. To conclude, we use three sets of atmospheric models (BT-SETTL14, Cloud-AE60, Exo-REM) to determine which ingredients are critically needed in the models to represent the SED of the objects, and to constrain their atmospheric parameters (T eff , log g, M/H). Results. We find that HR8799d and e properties are well reproduced by those of L6-L8 dusty dwarfs discovered in the field, among which some are candidate members of young nearby associations. No known object reproduces well the properties of planets b and c. Nevertheless, we find that the spectra and WISE photometry of peculiar and/or young early-T dwarfs reddened by submicron grains made of corundum, iron, enstatite, or forsterite successfully reproduce the SED of these planets. Our analysis confirms that only the Exo-REM models with thick clouds fit (within 2σ) the whole set of spectrophotometric datapoints available for HR8799 d and e for T eff = 1200 K, log g in the range 3.0-4.5, and M/H=+0.5. The models still fail to reproduce the SED of HR8799c and b. The determination of the metallicity, log g, and cloud thickness are degenerate. Conclusions. Our empirical analysis and atmospheric modelling show that an enhanced content in dust and decreased CIA of H2 is certainly responsible for the deviation of the properties of the planet with respect to field dwarfs. The analysis suggests in addition that HR8799c and b have later spectral types than the two other planets, and therefore could both have lower masses.Peer reviewe
    corecore